ECON 7130 - MicroEcoONOMICS 111
Spring 2016
Notes for Lecture #9

Today:
e GMM

Generalized Method of Moments

o General idea:

— Recall that the likelihood analysis is based on a full specification of the distributional form of
the data, and the DGP is assumed to be known apart from a finite number of parameters to be
estimated

— The main condition for the asymptotic efficiency of the ML estimator is that the likelihood function
is correctly specified

— If there is much uncertainty on the distributional form, it may be preferable to apply an estimation
technique that assumes less structure on the DGP

— GMM is an alternative principle, where the estimator is derived from a set of minimal assumptions,
the so-called moment conditions that the model should satisfy.

— Key difference from ML and other methods:

x The likelihood analysis begins with a statistical description of the data, and the econometri-
cian should ensure that the likelihood function accounts for the main characteristics of the
data

* Based on the likelihood function we can test hypotheses implied by economic theory (i.e., the
conditional probability should say something about the parameters)

x A GMM estimation, on the other hand, typically begins with an economic theory and the
data are used to produce estimates of the model parameters

* Thus it’s very much a structural approach - what are important are the model parameters
and there is an emphasis on econ theory (e.g. does demand slope down??)

* Estimation is done under minimal statistical assumptions, and often less attention is given to
the fit of the model (in theory, it must be right if the moments hold)

— Note the elegance in this - economic theory drives the model estimation
e Moment conditions:

— A moment condition is a statement involving the data and the parameters of interest.
Generally: g(6y) = E[f(wy, z,0p)] = 0, where

% 6 is a K x 1 dimensional vector

* f(+) is an R dimensional vector of potentially non-linear functions
x w; is a vector of variables appearing in the model
* z; is a vector of instruments

— Expectation of moment condition is zero when evaluated at the true parameters values, 6g

— For a given set of observations, w; and z; (¢t = 1,2,...,T), we cannot calculate the expectation,
and it is natural to rely on sample averages

Define the sample analogue to the moment conditions above as: gr(6) = Zthl flwe, z,0)

We then define the estimator 6 as the solution to gr(6) = 0.



* Need at least as many equations as we have parameters, R > K (the “order condition” for
identification).

x If R = K we say that the system is exactly identified

* The estimator is referred to as the method of moments (MM) estimator.

Example: MM estimator of the mean
Let po be the population expectation for y;

Let f(yt, f10) = Y& — Ho

Then g(uo) = E[f (e, o)) = Elye — fi] = 0

Based on the observed samples, y; (T'=1,2,...,T) we can construct the the sample moment
conditions:

N T .
* g7(it) = 7 21 (e — 1) = 0
* The MM mean estimator is the solution to this, or i = % Zthl y; - the sample average

*
*
*
*

e Identification of MM estimators:

The moment conditions are said to identify the parameters in 6 if there is a unique solution, so
that E[f(wy, 2t,0)] = 0 if and only if 8 = 6

e OLS as MM:

Consider the linear regression model, y, = x;BO +e,t=1,2,...,T,

* x; is a K x 1 vector of regressors

s Assume it represents the conditional expectation: E[y|z;] = x, 80 so that Ele;|z] =0
This implies K unconditional moments:

9(Bo) = Elzier) = Elzi(yy — x,50)] (NOTE - these are OLS assumptions that the X’s are uncor-
related with the errors)

Corresponding sample moments:

QT(B) = % Zthl T (Y — @3) = % Zthl LeYt — % Zthl xt:v;B =0

The MM estimator can then be derived as the unique sol’n to: BMM = (Zle :z:tx;) - 23:1 TiYs
* Provided that Zle xtx; is non-singular, so the inverse exists

Note: Barar = Bors

o IV as MM:

Partition the regression model above so that we have: y, = 90,11570 + x;téo + €
The K, variables in x1; are pre-determined
The Ko = K — K; variables in xo; are endogenous
This means:
* Flriie]) =0 (K7 x 1)
* Flroer] #0 (K2 x 1)

There is no unique sol’'n to the model like this since there are K parameters, but only K; < K
moment conditions

Non counsider Ky new variables, correlated with o, but not with the errors: E[zo:;] =0

These K5 new moment conditions can be added to the K7 above so that the model is now identified

Note that we now have two K x 1 vectors: x; = <§1t) and z; = (ilt>
2t 2t

2 is called the vector of instruments



* As we discussed with IV estimation...
* r14 are instruments for themselves, since they are predetermined

* z9¢ are instruments for xq;

— Now we have K moment conditions: g(8) = E[z&;] = Elz(ys — x,80)] = 0

The corresponding sample moment conditions are given by: gT(B) = % Zthl ze(ye — x;B) =0
N A —1
— The MM estimator is the solution to: Byry = (Zthl zt:ct) Z:{zl 2t

* Provided that the K x K matrix Z?zl 2y, is non-singular, so the inverse exists

— This MM estimator coincides with the simple IV estimator
e ML as MM:
— Can do MM instead of ML

— Moment conditions are that the first derivative of the likelihood function w.r.t. the parameters
must equal zero at 0y (this is the likelihood score function)

— MM gives consistent estimate of 8 even if likelihood function is misspecified
e Over-identified models and GMM:

— If R > K, then model is over-identified and, in general, no solution to gr(f) = 0 exists
— In this case, use the Generalized Method of Moments (GMM) estimator, éG MM

— éG M is chosen to minimize the distance between the gT(é) and 0

— Usually use a distance corresponding to the sum of squares, gT(O)/ gr(0)

— Weighting matrices:

x A disadvantage of the simple sum of squared errors is that you weight moments depending
upon the units used

+ Note that Ocarm depends upon the weighting matrix used:
Ocrine(Wr) = arg;nin{gT(g)/WTgT(e)} (1)

* Where Wy is the weighting matrix chosen

*x Need Wr to be positive definite so that put some weight on all moments (don’t throw info
away!)

* Note that the weight matrix is redundant when exactly identified (and in this case, estimator
does not depend on weight matrix)

— Why use an over identified model?
x Practical - may have trouble making exactly identified hit exactly
x Test model with over identifying restrictions

e Identification of GMM:

— Need unique solution to Ogarn (Wr) = argming{gr(0) Wrgr(0)}

— Also need the Law of Large Numbers to apply to the moment conditions (i.e, % Zthl flwe, z¢,0) —
E[f(wy, 2, 0] for T — o0)

x If data are IID, these are fulfilled
x If data are time series, need stationarity

e Std Errors

— As we noted before, the GMM estimator depends on the weight matrix



Some weight matrices produce precise estimators while others produce poor estimators with large
variances

We want to choose the optimal weight matrix to produce estimates with smallest possible asymp-
totic variance

This is an efficient or optimal GMM estimator

Intuition: moments with a small variance are very informative on the parameters and should have
a large weight

Moments with a high variance should have a smaller weight
2-Step

*

*

*

*

*

1st, estimate § with an identity matrix: é[l] = argming g7 (6) Wg7r(0)
N A N ~ o\ 1
2nd, use ) to find the optimal weight matrix, WPt =1 = (gT(Gm)gT(ﬁm) )

(2]
Q is the VCV matrix of the moments
Now you can use the optimal weight matrix to find the parameter estimates:

Oz = argmin gr(0) Wi gr(6) (2)

Note that estimator is not unique, but depends upon initial weight matrix
This is the two-step GMM estimator

If continue this until convergence (i.e. until the weight matrix doesn’t change between itera-
tions), get the iterated GMM estimator

This estimator does not depend upon the initial weight matrix
BUT, 2 steps is usually enough

e Overidentification tests

— Hansen J-test for over identifying restrictions (same as Sargan test for linear models - as we talked
about with IV)

— &5 =T*gr0crn) W gr(0crn) =T % Qr(0) ~ X2 (R — K)
— Where, Qr = g7 (0)'Wrgr(9)

R —

K degrees of freedom (because if want, can have K moments equal zero, so they don’t

contribute to test)

The intuition is that if we can set K moments to zero, but if all R are valid, then the remaining

R —

K should also be close to zero

So a lower J-stat means model more likely valid. Large means violated by data.
NOTES:

*

*

*

*

J-stat does not test validity of model per se
It’s not a test of underlying economic theory

It tests the whether over identifying restrictions are correct given identification using K
moments

Often structural models fail this - usually just used to compare one model’s fit to others’

How to code estimation:

— Stata

*

*

*

gmm command
Allows you to specify the moment conditions as substitutable expressions
- You'll enclose model parameters in braces, {}

Think about moment conditions taking the form of E[ze(8)] = 0, where z is a vector of
instruments, and (8 are the model parameters



* Will write out e(f) and then list instruments in the gmm command
* e.g., OLS by GMM
- Regression equation is: y; = By + B1 * x1; + B2 * To; + &;

- Moments are E {<m1> E] =0
2

- To estimate via gmm do:

- gmm (y-x1*{b1}-x2*x{b2}-{b3}), instruments(xl x2), [options]

- Where the first expression is the expectation of the error (i.e. the expectation that’ll be
zero)

- The options available include using a one-step or iterated estimator (default is two-step)
and a number of std error corrects (robust, cluster, etc)

- After run gmm, can do estat overid to get the Hansen J-test statistic
— Matlab

x Did you all do this in Adam’s class?
x Write down the moments function to get Qr

* Use fminsearch or other optimization routine (e.g. simulated annealing) to minimize the
distance

* Find optimal weight matrix by iterating on the above steps - use step 1 results to calculate
W2, the W2 to get 0

*x With these code, easy to make iteration until convergence

GMM: Example 1, Hansen and Singleton, “Generalized Instrumental Variables Estimation of Nonlinear

Rational Expectations Models” (Econometrica, 1982):

Mostly a methods paper about GMM with dynamic models

Question: What are the coefficient of relative risk aversion and the time preference parameter for the
representative consumer?

Problem: Need a structural model to estimate this, most methods for estimating a structural parame-
ters from dynamic models need to find a numerical solution to the model many times during estimation.
This is computationally intensive.

Solution: GMM using the Euler equations as moments
Basic Model:

— Consumption Capital Asset Pricing Model (Consumption CAPM)

* Model will give equilibrium prices in terms of consumption

* e.g., return on assets r;

— consumer solves: maxy.,ye Ey Zfio Btu(ey) s.b. cp + 8¢ < wy + Ryse_1

Euler equation is: SE[u'(ct11)Ret1|Zt] = v/ (ct)
x Where (3 is the time discount factor
* R is the gross, real interest rate
* ¢ is consumption

1—v

— If we have Constant Relative Risk Aversion (CRRA) utility function, then u(c;) = cf_,y
~v < 1 is the Coeff of Relative Risk Aversion

-
— Euler is now: SE; ([Ct“} RH_1|It> —1=0

Ct



. . 77
— Can then write this as: 3 [%] Riy1 —1=¢e411
— Where ¢4, is expectational error - uncorrelated with any variable in the time ¢ information set,
7,

— The economic interpretation is that under rational expectations a variable in the information set
must be uncorrelated to the expectation error.

— These give the orthogonality conditions of the moments - i.e. the model gives you the instrument
set you need (anything in the info set)

— Note that this model is nonlinear. This is not a problem for GMM
e Identification:

— We have two parameters to estimate, 8 and ~y.
x Note that these are the deep parameters of the model- they are policy invariant
— Thus we’ll need R > 2 instruments to identify the model
— Any relevant variable in the information set, Z; may be an instrument
— e.g., a constant, ¢;, Ry, Cf—jl, or lags of these

— Thus, can construct a vector of moment conditions:
7’)/ T
(ﬂ <Ct+1) Ry — 1) =0
Ct
Ct+1 - Ct ]
EllB(ZL) Ryi-1 =0 (3)
Ct Ct—1 ]
_ry T

— These moments will need to hold for t =1,2,...T.

— Thus can construct the sample analogue to the expectation, which his the sample mean of each
moment

gl

* e.g. 7 23:1 B (%) R;+1 =1 (this is the first moment condition above)
— Of course, also need economic model to be correct for identification

e Data:

— Stock return data

— Aggregate consumption data
o Results:

— Note how you don’t have to solve the dynamic model - the FOC (euler equations) are all you need
to estimate the parameters

— Estimates of 8 = 0.99 or so, v = 0.68 — 0.97

BLP GMM....



