
ECON 7130 - Microeconomics III
Spring 2016

Notes for Lecture #9

Today:

• GMM

Generalized Method of Moments

• General idea:

– Recall that the likelihood analysis is based on a full specification of the distributional form of
the data, and the DGP is assumed to be known apart from a finite number of parameters to be
estimated

– The main condition for the asymptotic efficiency of the ML estimator is that the likelihood function
is correctly specified

– If there is much uncertainty on the distributional form, it may be preferable to apply an estimation
technique that assumes less structure on the DGP

– GMM is an alternative principle, where the estimator is derived from a set of minimal assumptions,
the so-called moment conditions that the model should satisfy.

– Key difference from ML and other methods:

∗ The likelihood analysis begins with a statistical description of the data, and the econometri-
cian should ensure that the likelihood function accounts for the main characteristics of the
data

∗ Based on the likelihood function we can test hypotheses implied by economic theory (i.e., the
conditional probability should say something about the parameters)

∗ A GMM estimation, on the other hand, typically begins with an economic theory and the
data are used to produce estimates of the model parameters

∗ Thus it’s very much a structural approach - what are important are the model parameters
and there is an emphasis on econ theory (e.g. does demand slope down??)

∗ Estimation is done under minimal statistical assumptions, and often less attention is given to
the fit of the model (in theory, it must be right if the moments hold)

– Note the elegance in this - economic theory drives the model estimation

• Moment conditions:

– A moment condition is a statement involving the data and the parameters of interest.

– Generally: g(θ0) = E[f(wt, zt, θ0)] = 0, where

∗ θ is a K × 1 dimensional vector

∗ f(·) is an R dimensional vector of potentially non-linear functions

∗ wt is a vector of variables appearing in the model

∗ zt is a vector of instruments

– Expectation of moment condition is zero when evaluated at the true parameters values, θ0

– For a given set of observations, wt and zt (t = 1, 2, ..., T ), we cannot calculate the expectation,
and it is natural to rely on sample averages

– Define the sample analogue to the moment conditions above as: gT (θ) = 1
T

∑T
t=1 f(wt, zt, θ)

– We then define the estimator θ̂ as the solution to gT (θ) = 0.
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∗ Need at least as many equations as we have parameters, R ≥ K (the “order condition” for
identification).

∗ If R = K we say that the system is exactly identified

∗ The estimator is referred to as the method of moments (MM) estimator.

– Example: MM estimator of the mean

∗ Let µ0 be the population expectation for yt

∗ Let f(yt, µ0) = yt − µ0

∗ Then g(µ0) = E[f(yt, µ0)] = E[yt − µ̂] = 0

∗ Based on the observed samples, yt (T = 1, 2, ..., T ) we can construct the the sample moment
conditions:

∗ gT (µ̂) = 1
T

∑T
t=1(yt − µ̂) = 0

∗ The MM mean estimator is the solution to this, or µ̂ = 1
T

∑T
t=1 yt - the sample average

• Identification of MM estimators:

– The moment conditions are said to identify the parameters in θ0 if there is a unique solution, so
that E[f(wt, zt, θ)] = 0 if and only if θ = θ0

• OLS as MM:

– Consider the linear regression model, yt = x
′

tβ0 + εt, t = 1, 2, ..., T ,

∗ xt is a K × 1 vector of regressors

∗ Assume it represents the conditional expectation: E[yt|xt] = x
′

tβ0 so that E[εt|xt] = 0

– This implies K unconditional moments:

– g(β0) = E[xtεt] = E[xt(yt − x
′

tβ0)] (NOTE - these are OLS assumptions that the X’s are uncor-
related with the errors)

– Corresponding sample moments:

– gT (β̂) = 1
T

∑T
t=1 xt(yt − x′tβ̂) = 1

T

∑T
t=1 xtyt −

1
T

∑T
t=1 xtx

′

tβ̂ = 0

– The MM estimator can then be derived as the unique sol’n to: β̂MM =
(∑T

t=1 xtx
′

t

)−1∑T
t=1 xtyt

∗ Provided that
∑T
t=1 xtx

′

t is non-singular, so the inverse exists

– Note: β̂MM = β̂OLS

• IV as MM:

– Partition the regression model above so that we have: yt = x
′

1tγ0 + x
′

2tδ0 + εt

– The K1 variables in x1t are pre-determined

– The K2 = K −K1 variables in x2t are endogenous

– This means:

∗ E[x1tεt] = 0 (K1 × 1)

∗ E[x2tεt] 6= 0 (K2 × 1)

– There is no unique sol’n to the model like this since there are K parameters, but only K1 < K
moment conditions

– Non consider K2 new variables, correlated with x2t, but not with the errors: E[z2tεt] = 0

– These K2 new moment conditions can be added to the K1 above so that the model is now identified

– Note that we now have two K × 1 vectors: xt =

(
x1t
x2t

)
and zt =

(
x1t
z2t

)
– zt is called the vector of instruments
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∗ As we discussed with IV estimation...

∗ x1t are instruments for themselves, since they are predetermined

∗ z2t are instruments for x2t

– Now we have K moment conditions: g(β0) = E[ztεt] = E[zt(yt − x
′

tβ0)] = 0

– The corresponding sample moment conditions are given by: gT (β̂) = 1
T

∑T
t=1 zt(yt − x

′

tβ̂) = 0

– The MM estimator is the solution to: β̂MM =
(∑T

t=1 ztx
′

t

)−1∑T
t=1 ztyt

∗ Provided that the K ×K matrix
∑T
t=1 ztx

′

t is non-singular, so the inverse exists

– This MM estimator coincides with the simple IV estimator

• ML as MM:

– Can do MM instead of ML

– Moment conditions are that the first derivative of the likelihood function w.r.t. the parameters
must equal zero at θ0 (this is the likelihood score function)

– MM gives consistent estimate of θ even if likelihood function is misspecified

• Over-identified models and GMM:

– If R > K, then model is over-identified and, in general, no solution to gT (θ) = 0 exists

– In this case, use the Generalized Method of Moments (GMM) estimator, θ̂GMM

– θ̂GMM is chosen to minimize the distance between the gT (θ̂) and 0

– Usually use a distance corresponding to the sum of squares, gT (θ)
′
gT (θ)

– Weighting matrices:

∗ A disadvantage of the simple sum of squared errors is that you weight moments depending
upon the units used

∗ Note that θ̂GMM depends upon the weighting matrix used:

θ̂GMM (WT ) = argmin
θ
{gT (θ)′WT gT (θ)} (1)

∗ Where WT is the weighting matrix chosen

∗ Need WT to be positive definite so that put some weight on all moments (don’t throw info
away!)

∗ Note that the weight matrix is redundant when exactly identified (and in this case, estimator
does not depend on weight matrix)

– Why use an over identified model?

∗ Practical - may have trouble making exactly identified hit exactly

∗ Test model with over identifying restrictions

• Identification of GMM:

– Need unique solution to θ̂GMM (WT ) = argminθ{gT (θ)′WT gT (θ)}

– Also need the Law of Large Numbers to apply to the moment conditions (i.e, 1
T

∑T
t=1 f(wt, zt, θ)→

E[f(wt, zt, θ] for T →∞)

∗ If data are IID, these are fulfilled

∗ If data are time series, need stationarity

• Std Errors

– As we noted before, the GMM estimator depends on the weight matrix
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– Some weight matrices produce precise estimators while others produce poor estimators with large
variances

– We want to choose the optimal weight matrix to produce estimates with smallest possible asymp-
totic variance

– This is an efficient or optimal GMM estimator

– Intuition: moments with a small variance are very informative on the parameters and should have
a large weight

– Moments with a high variance should have a smaller weight

– 2-Step

∗ 1st, estimate θ with an identity matrix: θ̂[1] = argminθ gT (θ)′W[1]gT (θ)

∗ 2nd, use θ̂[1] to find the optimal weight matrix, W opt
[2] = Ω̂−1 =

(
gT (θ̂[1])gT (θ̂[1])

′
)−1

∗ Ω is the VCV matrix of the moments

∗ Now you can use the optimal weight matrix to find the parameter estimates:

θ̂[2] = argmin
θ

gT (θ)′W opt
[2] gT (θ) (2)

∗ Note that estimator is not unique, but depends upon initial weight matrix

∗ This is the two-step GMM estimator

∗ If continue this until convergence (i.e. until the weight matrix doesn’t change between itera-
tions), get the iterated GMM estimator

∗ This estimator does not depend upon the initial weight matrix

∗ BUT, 2 steps is usually enough

• Overidentification tests

– Hansen J-test for over identifying restrictions (same as Sargan test for linear models - as we talked
about with IV)

– ξJ = T ∗ gT (θ̂GMM )′W opt
T gT (θ̂GMM ) = T ∗QT (θ) ∼ χ2(R−K)

– Where, QT = gT (θ)′WT gT (θ)

– R − K degrees of freedom (because if want, can have K moments equal zero, so they don’t
contribute to test)

– The intuition is that if we can set K moments to zero, but if all R are valid, then the remaining
R−K should also be close to zero

– So a lower J-stat means model more likely valid. Large means violated by data.

– NOTES:

∗ J-stat does not test validity of model per se

∗ It’s not a test of underlying economic theory

∗ It tests the whether over identifying restrictions are correct given identification using K
moments

∗ Often structural models fail this - usually just used to compare one model’s fit to others’

How to code estimation:

– Stata

∗ gmm command

∗ Allows you to specify the moment conditions as substitutable expressions

· You’ll enclose model parameters in braces, {}
∗ Think about moment conditions taking the form of E[ze(β)] = 0, where z is a vector of

instruments, and β are the model parameters
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∗ Will write out e(β) and then list instruments in the gmm command

∗ e.g., OLS by GMM

· Regression equation is: yi = β0 + β1 ∗ x1i + β2 ∗ x2i + εi

· Moments are E

[(
x1
x2

)
ε

]
= 0

· To estimate via gmm do:

· gmm(y-x1*{b1}-x2*{b2}-{b3}), instruments(x1 x2), [options]

· Where the first expression is the expectation of the error (i.e. the expectation that’ll be
zero)

· The options available include using a one-step or iterated estimator (default is two-step)
and a number of std error corrects (robust, cluster, etc)

· After run gmm, can do estat overid to get the Hansen J-test statistic

– Matlab

∗ Did you all do this in Adam’s class?

∗ Write down the moments function to get QT

∗ Use fminsearch or other optimization routine (e.g. simulated annealing) to minimize the
distance

∗ Find optimal weight matrix by iterating on the above steps - use step 1 results to calculate
W2, the W2 to get θ2

∗ With these code, easy to make iteration until convergence

GMM: Example 1, Hansen and Singleton, “Generalized Instrumental Variables Estimation of Nonlinear
Rational Expectations Models” (Econometrica, 1982):

• Mostly a methods paper about GMM with dynamic models

• Question: What are the coefficient of relative risk aversion and the time preference parameter for the
representative consumer?

• Problem: Need a structural model to estimate this, most methods for estimating a structural parame-
ters from dynamic models need to find a numerical solution to the model many times during estimation.
This is computationally intensive.

• Solution: GMM using the Euler equations as moments

• Basic Model:

– Consumption Capital Asset Pricing Model (Consumption CAPM)

∗ Model will give equilibrium prices in terms of consumption

∗ e.g., return on assets rt

– consumer solves: max{ct}∞t=0
Et
∑∞
t=0 β

tu(ct) s.t. ct + st ≤ wt +Rtst−1

– Euler equation is: βEt[u
′(ct+1)Rt+1|It] = u′(ct)

∗ Where β is the time discount factor

∗ R is the gross, real interest rate

∗ c is consumption

– If we have Constant Relative Risk Aversion (CRRA) utility function, then u(ct) =
c1−γt

1−γ

– γ < 1 is the Coeff of Relative Risk Aversion

– Euler is now: βEt

([
ct+1

ct

]−γ
Rt+1|It

)
− 1 = 0
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– Can then write this as: β
[
ct+1

ct

]−γ
Rt+1 − 1 = εt+1

– Where εt+1 is expectational error - uncorrelated with any variable in the time t information set,
It

– The economic interpretation is that under rational expectations a variable in the information set
must be uncorrelated to the expectation error.

– These give the orthogonality conditions of the moments - i.e. the model gives you the instrument
set you need (anything in the info set)

– Note that this model is nonlinear. This is not a problem for GMM

• Identification:

– We have two parameters to estimate, β and γ.

∗ Note that these are the deep parameters of the model- they are policy invariant

– Thus we’ll need R ≥ 2 instruments to identify the model

– Any relevant variable in the information set, It may be an instrument

– e.g., a constant, ct, Rt,
ct
ct−1

, or lags of these

– Thus, can construct a vector of moment conditions:

E

[(
β

(
ct+1

ct

)−γ
Rt+1 − 1

)]
= 0

E

[(
β

(
ct+1

ct

)−γ
Rt+1 − 1

)(
ct
ct−1

)]
= 0

E

[(
β

(
ct+1

ct

)−γ
Rt+1 − 1

)
Rt

]
= 0

(3)

– These moments will need to hold for t = 1, 2, ...T .

– Thus can construct the sample analogue to the expectation, which his the sample mean of each
moment

∗ e.g. 1
T

∑T
t=1 β

(
ct+1

ct

)−γ
Rt+1 = 1 (this is the first moment condition above)

– Of course, also need economic model to be correct for identification

• Data:

– Stock return data

– Aggregate consumption data

• Results:

– Note how you don’t have to solve the dynamic model - the FOC (euler equations) are all you need
to estimate the parameters

– Estimates of β = 0.99 or so, γ = 0.68− 0.97

BLP GMM....
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